专注于产品设计与数据分析,致力于用技术创造价值 Focused on Product Management & Data Analytics, Creating Value Through Technology
产品管理 · 数据分析 · 用户体验 Product Management · Data Analytics · User Experience
我是纽约大学阿布扎比分校大三在读学生,主修计算机科学,辅修应用数学和经济学。我对产品管理和数据分析充满热情,擅长通过数据洞察用户需求,并设计出高效的产品解决方案。未来,我希望在科技公司担任产品经理或数据分析师,推动创新和业务增长。
I am a junior student at New York University Abu Dhabi, majoring in Computer Science with minors in Applied Mathematics and Economics. I am passionate about Product Management and Data Analytics, skilled at understanding user needs through data insights and designing efficient product solutions. In the future, I aspire to work as a Product Manager or Data Analyst in tech companies, driving innovation and business growth.
计算机科学学士,辅修应用数学和经济学 B.S. in Computer Science, Minors in Applied Mathematics and Economics
预计毕业时间:2026年5月 Expected Graduation: May 2026
在这门课程中,我学习了机器学习的基本概念和算法,包括监督学习、无监督学习和强化学习。通过实践项目,我掌握了如何使用Python中的Scikit-learn和TensorFlow等工具来构建和优化模型,并应用于实际问题,如分类、回归和聚类。 In this course, I learned fundamental concepts and algorithms in machine learning, including supervised learning, unsupervised learning, and reinforcement learning. Through practical projects, I mastered using tools like Scikit-learn and TensorFlow in Python to build and optimize models for real-world problems such as classification, regression, and clustering.
这门课程涵盖了软件开发生命周期的各个阶段,包括需求分析、设计、编码、测试和维护。我学习了如何使用敏捷开发方法和工具(如Git和Jira)来管理项目,并通过团队合作完成了一个完整的软件项目,提升了我的编程和项目管理能力。 This course covered all phases of the software development lifecycle, including requirements analysis, design, coding, testing, and maintenance. I learned how to use agile development methods and tools (such as Git and Jira) for project management, and completed a full software project through teamwork, enhancing my programming and project management skills.
这门课程重点讲解了概率论和统计推断的基本原理。我学习了如何应用概率分布、假设检验和回归分析来解决实际问题,并通过使用R和Python进行数据分析,提升了我的统计建模能力。 This course focused on the fundamental principles of probability theory and statistical inference. I learned how to apply probability distributions, hypothesis testing, and regression analysis to solve practical problems, and enhanced my statistical modeling skills through data analysis using R and Python.
在这门课程中,我学习了向量空间、矩阵运算、特征值和特征向量等线性代数的核心概念。这些知识为我在机器学习、数据分析和计算机图形学等领域打下了坚实的数学基础。 In this course, I studied core concepts of linear algebra including vector spaces, matrix operations, eigenvalues, and eigenvectors. This knowledge built a solid mathematical foundation for my work in machine learning, data analysis, and computer graphics.
在这门课程中,我学习了经典算法设计和分析技术,包括分治法、动态规划和贪心算法。通过编程作业和项目,我掌握了如何高效地解决计算问题,并理解了算法的时间复杂度和空间复杂度分析。 In this course, I learned classic algorithm design and analysis techniques, including divide-and-conquer, dynamic programming, and greedy algorithms. Through programming assignments and projects, I mastered efficient problem-solving methods and understood time and space complexity analysis.
这门课程重点介绍了数据管理的基本概念和技术,特别是SQL语言的应用。我学习了如何设计和管理关系数据库,执行复杂的查询操作,并通过实际项目掌握了数据清洗、转换和分析的流程。此外,我还学习了如何使用Python和Pandas进行数据处理和可视化。 This course introduced fundamental concepts and techniques in data management, especially SQL applications. I learned how to design and manage relational databases, execute complex queries, and mastered data cleaning, transformation, and analysis processes through practical projects. Additionally, I learned data processing and visualization using Python and Pandas.
这门课程结合了金融理论与实际应用,涵盖股票、债券和基金的投资分析。我学习了固定收益工具定价、利率风险对冲、资产定价理论(如CAPM、APT)以及实证资产定价方法(如Fama-MacBeth回归)。通过数据分析项目,我掌握了投资决策的核心工具,并为投资银行面试做好了准备。 This course combined financial theory with practical applications, covering investment analysis of stocks, bonds, and funds. I studied fixed income instrument pricing, interest rate risk hedging, asset pricing theories (such as CAPM, APT), and empirical asset pricing methods (such as Fama-MacBeth regression). Through data analysis projects, I mastered core tools for investment decision-making and prepared for investment banking interviews.
在全球3713支队伍中排名前4%(第143名),获得银牌 Ranked top 4% (143rd) among 3,713 global teams, earned Silver Medal